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Abstract
On the basis of generations of one-dimensional and two-dimensional graph
states, we generate a three-dimensional N3-qubit graph state based on
Josephson charge qubits. Since any two charge qubits can be selectively and
effectively coupled by a common inductance, the controlled phase transform
between any two-qubit states can be performed. Accordingly, we can
generate arbitrary multi-qubit graph states corresponding to arbitrary shape
graphs, which meet the expectations of various quantum information processing
schemes. All the devices in the scheme are well within current technology. It is
a simple, scalable and feasible scheme for the generation of various graph states
based on Josephson charge qubits.

Entanglement [1] can serve as a basic ingredient in the course of quantum information
processing. In achieving the task of quantum communication, the entanglement is a medium
for transferring quantum information. Owing to entanglement, quantum computers have
potentially superior computing power over their classical counterparts. Graph states [2–4] are
a family of multi-qubit states. Many well-known states, such as Greenberger–Horne–Zeilinger
(GHZ) [5] states and cluster states [6], can be generated from the graph states. In quantum error
correcting codes [7, 8] and in one-way quantum computing [9, 10], some of the graph states
are used as resources. For every non-trivial graph state it is possible to construct three-setting
Bell inequalities which are maximally violated only by this state [11, 12].

The concept of a graph is the basis of a graph state. A graph G = (V , E) comprises
two classes of element, i.e., vertices V and edges E . Each graph can be represented by a
diagram in a plane, where each vertex is represented by a point and each edge E by an arc
joining two not necessarily distinct vertices [3]. For the graph states, vertices V correspond
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to qubits of physical systems and edges represent interactions of qubits. The state vector
|�〉 = |+〉⊗V = ((|0〉 + |1〉)/√2)⊗V is referred to as the graph state vector of the empty
graph. The state vector of the graph state containing edges is described as

|G〉 =
∏

(i, j∈E)

U (i, j)|�〉 =
∏

(i, j∈E)

U (i, j)((|0〉 + |1〉)/√2)⊗V (1)

with U (i, j) = (I (i) ⊗ I ( j) + σ (i)
z ⊗ I ( j) + I (i) ⊗ σ

( j)
z − σ (i)

z ⊗ σ
( j)
z )/2 corresponding to

a controlled phase-gate between qubits labelled i and j , described by Pauli matrices. As
mentioned above, the graph states have special characteristics and practical applications, so
the preparation of the graph states has become the focus of research. Clark et al [7] present a
scheme that allows arbitrary graph states to be efficiently created in a linear quantum register
via an auxiliary entangling bus. Benjamin et al [13] present a scheme that creates graph states
by simple three-level systems in separate cavities. Bodiya et al [14] propose a scheme for
efficient construction of graph states using realistic linear optics, an imperfect photon source
and single-photon detectors.

Recently, much attention has been attracted to the quantum computer, which works
on the fundamental quantum mechanical principle. Quantum computers can solve some
problems exponentially faster than classical computers. For realizing quantum computing,
some physical systems, such as nuclear magnetic resonance [15], trapped irons [16], cavity
quantum electrodynamics (QED) [17], and optical systems [18], have been proposed. These
systems have the advantage of high quantum coherence, but cannot be integrated easily to
form large-scale circuits. Because of large-scale integration and relatively high quantum
coherence, the Josephson charge qubit [19–21] and the flux qubit [22, 23], which are based
on the macroscopic quantum effects in low-capacitance Josephson junction circuits [24, 25],
are the promising candidates for quantum computing. As is well known, the graph states
are mainly applied to quantum computing. Accordingly, generation of the graph states by
Josephson charge and flux qubits is of great importance. In this paper, we propose a scheme
for the generation of the graph states using Josephson charge qubits. This scheme is simple and
easily manipulated, because any two charge qubits can be selectively and effectively coupled
by a common inductance. More manipulations can be realized before decoherence sets in. All
of the devices in the scheme are well within current technology. It is a simple, scalable and
feasible scheme for the generation of various graph states based on Josephson charge qubits.

This letter is organized as follows. First, we introduce the Josephson charge-qubit structure
and the Hamiltonian of the system. Second, we explain how to implement the controlled phase-
gate. Third, we illustrate the generation of the arbitrary multi-qubit graph states corresponding
to arbitrary shape graphs. Fourth, we give necessary discussions for the feasibility of our
scheme. Finally, the conclusions are given.

Since the earliest Josephson charge qubit scheme [19] was proposed, a series of improved
schemes [20, 26] has been explored. Here, we concern ourselves with the architecture of
the Josephson charge qubit in reference [26], which is the first efficient scalable quantum
computing (QC) architecture. The Josephson charge qubit structure is shown in figure 1. It
consists of N Cooper-pair boxes (CPBs) coupled by a common superconducting inductance
L. For the kth Cooper-pair box, a superconducting island with charge Qk = 2enk is
weakly coupled by two symmetric direct current superconducting quantum interference devices
(dc SQUIDs) and biased by an applied voltage through a gate capacitance Ck . Assume that the
two symmetric dc SQUIDs are identical and all Josephson junctions in them have Josephson
coupling energy E0

J k and capacitance CJ k . The self-inductance effects of each SQUID loop
are usually neglected because of the very small size (1 μm) of the loop. Each SQUID pierced
by a magnetic flux �Xk provides an effective coupling energy −EJ k(�Xk) cos φk A(B), with
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Figure 1. Josephson charge-qubit structure. Each CBP is configured both in the charging regime
Eck � E0

J k and at low temperatures kBT � Eck . Furthermore, the superconducting gap � is
larger than Eck so that quasiparticle tunnelling is suppressed in the system.

EJ k(�Xk) = 2E0
J k cos(π�Xk/�0), and the flux quantum �0 = h/2e. The effective phase

drop φk A(B), with subscript A(B) labelling the SQUID above (below) the island, equals the
average value, [φL

k A(B) + φR
k A(B)]/2, of the phase drops across the two Josephson junctions in

the dc SQUID, with superscript L(R) denoting the left (right) Josephson junction.
For any given Cooper-pair box, say i , when �Xk = 1

2�0 and VXk = (2nk + 1)e/ck for
all boxes except k = i , the inductance L connects only the i th Cooper-pair box to form a
superconducting loop. In the spin- 1

2 representation, based on charge states |0〉 = |ni〉 and
|1〉 = |ni+1〉, the reduced Hamiltonian of the system becomes [26]

H = εi(VXi)σ
(i)
z − Ē J i(�Xi ,�e, L)σ (i)

x , (2)

where εi(VXi) is controlled by the gate voltage VXi , while the intrabit coupling
Ē J i(�Xi ,�e, L) depends on inductance L, the applied external flux �e through the common
inductance and the local flux �Xi through the two SQUID loops of the i th Cooper-pair box.
By controlling �Xk and VXk , the operations of Pauli matrices σ (i)

z and σ (i)
x are achieved. Thus,

any single-qubit operations are realized by utilizing equation (1).
To manipulate many-qubit states, say i and j , we configure �Xk = 1

2�0 and VXk =
(2nk + 1)e/ck for all boxes except k = i and j . In this case, the inductance L is only shared by
the Cooper-pair boxes i and j to form superconducting loops. The Hamiltonian of the system
can be reduced to [26, 27]

H =
∑

k=i, j

[εk(VXk)σ
(k)
z − Ē J kσ

(k)
x ] + 	i jσ

(i)
x σ ( j)

x , (3)

where the interbit coupling 	i j depends on both the external flux �e through the inductance
L, the local fluxes �Xi and �X j through the SQUID loops. In equation (2), if we choose
VXk = (2nk + 1)e/ck , the Hamiltonian of the system can be reduced to

H = −Ē J iσ
(i)
x − Ē J jσ

( j)
x + 	i jσ

(i)
x σ ( j)

x . (4)

For simplicity of calculation, we assume Ē J i = Ē J j = 	i j = −π h̄
4τ

(τ is a given period of
time), which can be obtained by suitably choosing parameters. Thus equation (3) becomes

H = −π h̄

4τ
(−σ (i)

x − σ ( j)
x + σ (i)

x σ ( j)
x ). (5)

Below, we discuss problems on the basis {|+〉 = 1√
2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)}.

According to Hamiltonian H of equation (5), we can obtain the following evolutions:

|++〉i j → e−iπ t/4τ |++〉i j , (6a)

|+−〉i j → e−iπ t/4τ | + −〉i j , (6b)

|−+〉i j → e−iπ t/4τ |−+〉i j , (6c)

|−−〉i j → ei3π t/4τ |−−〉i j . (6d)
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If we choose t = τ , which can be achieved by choosing the switching time, and perform a
single-qubit operation U = eiπ/4, we can obtain

|++〉i j → |++〉i j , (7a)

|+−〉i j → |+−〉i j , (7b)

|−+〉i j → |−+〉i j , (7c)

|−−〉i j → −|−−〉i j . (7d)

Equations (7) have actually realized the operation of a controlled phase gate. Any two charge
qubits can be selectively and effectively coupled by a common inductance, so the controlled
phase transform between any two-qubit states is performed. It is very important for the
following generation of arbitrary multi-qubit graph states corresponding to arbitrary shape
graphs.

Under the basis of {|+〉, |−〉}, the state vector of the graph state containing edges is
described as

|G〉 =
∏

(i, j∈E)

U ′(i, j)((|+〉 + |−〉)/√2)⊗V , (8)

where U ′(i, j) is a controlled phase-gate for the basis of {|+〉, |−〉}. Our goal is generating
a three-dimensional N3-qubit graph states corresponding to a three-dimensional graph. The
work of generating three-dimensional graph state divides into the following three steps.

Step 1: first, we prepare all N charge qubits in the states of |+〉, which is the graph state of
an empty graph. Next, we perform N − 1 controlled phase transforms between adjacent charge
qubits in the x-axis direction as shown in figure 2(a). Thus we obtain a one-dimensional graph
state corresponding to the right graph of the figure 2(a).

Step 2: first, we prepare N graph states of one dimension, which are the N-qubit graph
states corresponding to the right graph in the figure 2(a). Next, on the basis of the left graph
of the figure 2(b), we perform N(N − 1) controlled phase transforms between adjacent charge
qubits in the y-axis direction as shown in figure 2(b). Thus we obtain a two-dimensional graph
state corresponding to the right graph in the figure 2(b).

Step 3: first, we prepare N graph states of two dimensions, which are the N2-qubit graph
states corresponding to the right graph in the figure 2(b). Next, on the basis of the left graph of
the figure 2(c), we perform N2(N − 1) controlled phase transforms between adjacent charge
qubits in the z-axis direction as shown in figure 2(c). Thus we obtain a three-dimensional graph
state, which is an N3-qubit graph state corresponding to the right graph in figure 2(c).

It is worth adding that our scheme can generalize to generate arbitrary multi-qubit graph
states corresponding to arbitrary shape graphs, which meet the expectations of various quantum
information processing schemes.

Below, we briefly discuss the experimental feasibility of the current scheme. For the charge
qubit used in our scheme, the typical experimental switching time τ (1) during a single-bit
operation is about 0.1 ns [26]. The inductance L used in our proposal is about 30 nH, which is
experimentally accessible. In the earlier design [20], the inductance L is about 3.6 μH, which
is difficult to make at nanometre scales. Another improved design [24] greatly reduces the
inductance L to ∼120 nH, which is about four times larger than the one used in our scheme. The
fluctuations of voltage source and fluxes result in decoherence for all charge qubits. The gate
voltage fluctuation plays the dominant role in producing decoherence. The estimated dephasing
time is τ4 ∼ 10−4 s [24], which allows in principle 106 coherent single-bit manipulations.
Owing to using the probe junction, the phase coherence time is only about 2 ns [28, 29]. In
this setup, background charge fluctuations and the probe–junction measurement may be two
of the major factors in producing decoherences [26]. The charge fluctuations are principally
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Figure 2. The dashed lines denote that the interactions between qubits have not taken place. The real
lines denote that the interactions between qubits have been completed. (a) Generation of N -qubit
graph state from the graph state of an empty graph to a one-dimensional graph state. (b) Generation
of the graph state from one-dimensional graph states to two-dimensional graph state. (c) Generation
of the graph state from two-dimensional graph states to three-dimensional graph state.

only in the low-frequency region and they can be reduced by the echo technique [28] and by
controlling the gate voltage to the degeneracy point, but an effective technique for suppressing
charge fluctuations still needs to be explored. According to the discussion above, all the devices
in our scheme are achievable by current technology.

In summary, we have investigated a simple scheme for generating the graph states based
on Josephson charge qubits. First, we generate a one-dimensional N-qubit graph state from a
graph state corresponding to an empty graph. Next, on the basis of the first step, we generate
a two-dimensional N2-qubit graph state. Finally, on the basis of the second step, we generate
a three-dimensional N3-qubit graph state. Since any two charge qubits can be selectively and
effectively coupled by a common inductance, the controlled phase transform between any two-
qubit states is performed. Accordingly, we can generate arbitrary multi-qubit graph states
corresponding to arbitrary shape graphs, which meet the expectations of various quantum
information processing schemes. The architecture of our proposal is achievable by current
scalable microfabrication techniques. More manipulations can be realized before decoherence
sets in. All the devices in the scheme are well within current technology. It is a simple,
scalable and feasible scheme for the generation of various graph states based on Josephson
charge qubits.
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